

INTRODUCTION

This document describes how to adapt the Governance Dashboard when the QVPR is hosted in a Database.

Customized Governance Dashboard is not Supported by Qlik, it is suggested to engage a developer to review the

document and make the necessary changes.

DICLAIMER

! The information in this article is provided as-is and to be used at own discretion. Ongoing support on the solution is

not provided by Qlik Support.

GOVERNANCE DASHBOARD CONNECTED TO SQL SERVER.

This document describes how to adapt the Governance Dashboard to read from SQL server.

The original Governance Dashboard has a subroutine called publisherScan that is the method that calls other

subroutines to get the QDS information. The subroutine called qvprScan reads from the XML files that most of

the customers use for their QVPR.

In order to adapt the dashboard, it is necessary to make 3 basic changes:

1. Create a new subroutine to read from the SQL Server tables, this includes connection to the Database and
SQL queries to get the QVPR information.

2. To comment out the fraction of the code where the qvprScan is called.

The details are described below:

CREATE A NEW SUBROUTINE TO READ FROM THE SQL SERVER TABLES, THIS INCLUDES

CONNECTION TO THE DATABASE AND SQL QUERIES TO GET THE QVPR INFORMATION.

The following code was just adapted to include the queries to the DB instead of reading XML files, there were no
changes to any function or value, if the official Governance Dashboard changes in the future, this part needs to be
adapted accordingly.

SQLQVPR SUBRUTINE

SUB sqlQVPR

ODBC CONNECT TO SQLQVPR;

LET vSQLDB='QVPR';

LET vDBO= 'dbo';

LET vDBDBO= '$(vSQLDB)' & '.' & '$(vDBO)' & '.' ;

 mapSDFR:

 Mapping LOAD

 mapTaskId,

 mappedPath;

 SQL SELECT RTRIM(LTRIM(ID)) as mapTaskId,

//TRIM can be used on SQL Server 2017 and above

 Path as mappedPath //? XML doesn't have a

mappedPath field, not sure if it should be path the field to retrieve here

 FROM $(vDBDBO)SourceDocumentFolderResource;

 trace 'ngm SOURCE DOCUMENT LOADED';

 mapSourceDocument:

 Mapping LOAD

 mapTaskId,

 ApplyMap('mapSDFR',trim(FolderID)) &Path as

mappedTaskFileName;

 SQL SELECT

 LTRIM(RTRIM(ID)) as mapTaskId,

 FolderID,

 Path

 FROM $(vDBDBO)SourceDocument;

 TaskTrigger:

 LOAD TaskId,

 TaskTriggerEnabled,

 replace(TriggerType,'Trigger','') as

[Task Trigger Type];

 SQL SELECT

 LTRIM(RTRIM(taskID)) as TaskId,

 [Enabled] as TaskTriggerEnabled,

 TriggerType

 FROM $(vDBDBO)[Trigger] ;

 // Keep DocumentTask as separate table due to inability to

join to existing Tasks table (root cause still unknown)

 DocumentTask:

 LOAD

 TaskId, // Only join on TaskId

 // These fields exist already on Tasks table and

will be checked later and 'combined' with any existing field values

 ApplyMap('mapSourceDocument',SourceDocumentID)

 as docTask_Task_FileName,

 //ApplyMap('mapTaskCategory',trim(ID))

 as [Task CategoryDT],

SubField(replace(ApplyMap('mapSourceDocument',SourceDocumentID),'/','\'),'\',-1)

 as docTask_DocName,

 docTask_TaskName,

 docTask_TaskEnabled,

 alt(timestamp(ModifiedTime),timestamp(timestamp#(ModifiedTime,'$(TimestampForma

t1)')),timestamp(timestamp#(ModifiedTime,'$(TimestampFormat2)'))) as

docTask_TaskModified,

 // These fields are unique to DocumentTask and

are joined into the Tasks table directly

 AllowPluginClient,

 AllowMobileClient,

 AllowZeroFootprintClient,

 AllowPDFGeneration,

 [Task PDF ReportName],

 AllowDownload,

 [Task Distribute],

 SectionAccessUserName,

 SessionTimeout,

 DocumentTimeout,

 replace(ReloadOption,'Reload','') as

ReloadOption;

 SQL SELECT

 LTRIM(RTRIM(ID))

 as TaskId, // Only join on TaskId

 Name as

docTask_TaskName,

 [Enabled] as

docTask_TaskEnabled,

 // These fields are unique to DocumentTask and

are joined into the Tasks table directly

 AllowPluginClient,

 AllowMobileClient,

 AllowZeroFootprintClient,

 AllowPDFGeneration,

 PDFReportName as [Task PDF

ReportName],

 DownloadAccess AS AllowDownload,

 Distribute as [Task

Distribute],

 SectionAccessUserName,

 SessionTimeout,

 DocumentTimeout,

 ReloadOption,

 SourceDocumentID,

 ModifiedTime

 FROM $(vDBDBO)DocumentTask;

 DistributionDetail:

 LOAD

 TaskId,

 Distribution,

 'Distribute to ' & RecipientType &': ' &

RecipientName as DistributionDetail,

 RecipientName,

 RecipientType,

 DistributionType;

 SQL SELECT

 LTRIM(RTRIM(DocumentTaskID)) as TaskId,

 1 as Distribution,

 RecipientType,

 RecipientName,

 DistributionType

 FROM $(vDBDBO)DistributionDetail;

 Concatenate (Tasks)

 SQL SELECT

 LTRIM(RTRIM(ID)) as

TaskId,

// ApplyMap('mapTaskCategory',trim(ID)) as

[Task Category],

 CommandLine as [Task

CommandLine],

 Name as [Task

Name],

 Enabled as [Task

Enabled],

 Description as [Task

Description],

 IgnoreErrors as [Task

IgnoreErrors],

 1 as

TaskExternalProgram

 FROM $(vDBDBO)ExternalProgramTask;

 /* About the QVPR files

 DistributionDetail >> Keep this separate with Recipient Type and Name because

can have multiple entries per Task

 > in DistributionDetail entity:

 DocumentTaskID as TaskId >

links to > TaskId in Tasks and ID in DocumentTask,

 RecipientName="All Users" + RecipientType="Anonymous"

 Unused Data:

DistributionType,DDDField,DDDValueType,FSPath,SubPath,QvsResourceID,ValidateEmails,ID,

ModifiedByUser,ModifiedTime,IsDynamicDistribution

 DocumentTask

 > in DocumentTask entity:

 ID as TaskId > to

link with DistributionDetail for recipient name and type

 Name as DT_Name < Already have this from Tasks!

 Enabled as DT_Enabled < Already have this in Tasks

 Description as DT_Description < Missing from tasks

 AllowPluginClient,AllowMobileClient,AllowZeroFootprintClient,AllowPDFGeneration

,

 SourceDocumentID < Links with ID from

SourceDocument.xml

 Distribute="true"

 maybe: SectionAccessUserName,SectionAccessPassword

 Unused Data:

NameIsAutoGenerated,PDFReportID,AlwaysOpenable,ClearLocks,ClearAll,ClearAlwaysOneSelec

ted,ReapplySelections,

 EnableAuditLogging,SetScript,OverrideXSSectionAccess,MaxOpenSessions,SessionTim

eout,DocumentTimeout,ReloadOption, DistributionServiceID,

 TaskTrack,TimeoutMinutes,AjaxUrl,NumberOfAttempts,ScriptParameterName,ScriptPar

ameterValueField,ScriptParameterValueFilename,NameTemplate,

 CreationMode,CreatorUserNames,DownloadAccess,DownloadUsers,ExportAccess,ExportU

sers,VersionID,EnableSessionCollaboration,DocumentDescription,

 SendNotificationEmail,ModifiedByUser,ModifiedTime

 ExternalProgramTask >>> Concatenate this onto the Tasks table. No doc will be

directly associated with it.

 >> Might not have any entries (common)

 Name as [Task Name],

 Enabled as [Task Enabled],

 Description as [Task Description],

 ID as TaskId,

 IgnoreErrors as [Task IgnoreErrors],

 CommandLine as [Task CommandLine]

 SourceDocument >> We have most of this data in Tasks &

TaskExecutionHistory xmls from QDS. However, that is just for tasks which executed.

Need this to show

 Information for Tasks that have not executed

(or whose last execution was before the history cutoff date (too old).

 Just concanetante this SourceDocument info

into SessionTaskAuditMaster to get DocName linked to TaskId

 ID as SourceDocumentID

 > link with DocumentTask

 applymap('mapFolderResource','FolderID') & Path

 as Task_FileName

 FolderID > Need this linked to ____ to get full path

and name of Task_FileName (as shown in Tasks table)

 Not used: DistributionServiceID, ModifiedByUser, ModifiedTime

 SourceDocumentFolderResource.xml > to get the full path of the

SourceDocument, map Path to SourceDocument via ID and FolderID

 mapFolderResource:

 Load ID, Path

 Path = full path (up to the "path" on SourceDocument)

 ID as FolderID > Link to

SourceDocument

 Trigger >> Map this into the Tasks Table (after other QVPR tasks

are added to it) to get trigger information

 > in Trigger:

 TaskID links to TaskId

 Enabled as [Task Trigger Enabled],

 TriggerType as [Task Trigger Type]

 Data not used (yet)

 EnableAt,ExpireAt,RunTaskID,MaxCount,Count,StartAt,Days=""

EDXPassword,TimeContraintFrom,TimeContraintTo,DayNumbers,Months,Occourence,AndTimeCons

traintMinutes,

 MainTriggerID,ID,ModifiedByUser,ModifiedTime,

 */

ENDSUB

It will be necessary to create a new tab an paste the above code, I just created a new tab next to the Main tab,

Once the code was pasted there are a couple of lines that need to be replaced.

1. The Connection, for this test I used a ODBC DSN

The Connection string in the script needs to be replaced inserting a new connection from QlikView desktop. Data -

> ODBC -> Connect

The other information that needs to be replaced is the following:

LET vSQLDB='QVPR';

LET vDBO= 'dbo';

Where:

vSQLDB is the database name

vDBO is the database owner

TO COMMENT OUT THE FRACTION OF THE CODE WHERE THE QVPRSCAN IS CALLED .

It will be necessary to find the publisherScan subroutine and comment out the call to the subroutine qvprscan by

sqlQVPR

Save and create a duplicate of the QVW.

It is suggested to keep a copy of the GD that hasn’t been reloaded for future use.

CONFIGURATION OF THE GOVERNANCE DASHBOARD

The configuration for the governance dashboard should be the same documented in the Supported Governance

Dashboard, the only Path will be no necessary is the QVPR path as the dashboard will be reading data from the SQL

Server database.

Now the configuration was completed the dashboard can be reloaded.

